If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-32k+16=0
a = 2; b = -32; c = +16;
Δ = b2-4ac
Δ = -322-4·2·16
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{14}}{2*2}=\frac{32-8\sqrt{14}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{14}}{2*2}=\frac{32+8\sqrt{14}}{4} $
| K^2-16k+8=0 | | (a-2)(a+2)=15/2a | | 2/3y+1+1/6y=-24 | | 30x^2+40=0 | | 3^(2+x)=81 | | 3n^2-79n+609=0 | | 2(5a+3)=26 | | 3^2*3^x=18 | | (a-2)(a+2)=(15/2)a | | x^2=75/3 | | 1-4r²=0 | | 2(x-3=24 | | 3(x-2)(2x+4)=0 | | 50=8(m+4) | | P(x)=3(x-2)(2x+4) | | h+15/2=4 | | 5=6z+17 | | 2x+2+3x-3=2 | | 4n-54=n | | 54-4n=n | | –42=3m | | x×x×x-4×10=24 | | 5-(n-1)=-16 | | x-24x-76x=0 | | –5b=55 | | 18−(9r+7)=−16 | | 3(x+1)+7(x+3)=74 | | x=x12-250 | | 10=2w−2 | | X(x+12)=50 | | x^2-8x=38 | | (4x^2-36)^2=64 |